
MAGNETISM

THE COSMIC FOUNDATIONS SERIES

MAGNETISM

THE COSMIC FOUNDATIONS SERIES

DEVELOPMENT TEAM

Discover the Universe

CJ Woodford, Alicia Savelli, Eesha Das Gupta, Lindsay P. Mann, Julie Bolduc-Duval

In collaboration with

Laurie Rousseau-Nepton, Dunlap Institute for Astronomy and Astrophysics at the University of Toronto

ILLUSTRATIONS & DESIGN

Lindsay P. Mann

COVER PICTURE CREDITS

Magnetism: Visualization built by Greg Shirah and Tom Bridgman, NASA/Goddard Space Flight

Center Scientific Visualization Studio. Caption by Mike Carlowicz

Light & Optics: Dobromir-Hristov

Beyond Foundations: NASA/NOAA

Discover the Universe is offered by the Dunlap Institute for Astronomy and Astrophysics at the University of Toronto.

September 2025

This work is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs license. You are free to redistribute this guide in its original, unmodified form, as long as the original authors are credited.

Safety Guidelines for Magnetism Activities

For the safety of both you and your students, please follow these precautions whenever conducting activities involving magnets or iron filings:

MAGNETS SAFETY

Students should always be closely supervised when handling magnets. Extra caution is needed with younger students to ensure magnets are not swallowed. If a student swallows one or more magnets, contact emergency services immediately.

Pay close attention when separating or handling magnets. To safely separate them, grasp the outer magnet, slide it off the stack, and pull it away quickly. Whenever possible, use magnets on a metal table or surface to prevent them from snapping together unexpectedly.

Magnets are often made of composite materials and can break. Do not use broken magnets, as they may have sharp edges. Handle magnets carefully and avoid dropping them or allowing them to "snap" together, even from short distances.

Magnets can corrode over time. Keep them dry and store in a cool, dry place away from moisture.

NEODYMIUM MAGNETS SAFETY

The small disc-shaped neodymium magnets are very strong and require extra caution. They should only be handled by older students. We recommend these be used by Grade 9 and up.

Neodymium magnets are prone to breaking because they are made of a composite material and are very strong. Use with care and discard of broken magnets safely.

Always keep your hands far apart when handling neodymium magnets in both hands. Keep neodymium magnets away from magnetic media such as credit cards, mobile phones, computers, and medical devices like insulin pumps. Individuals with implanted medical devices, including pacemakers, should not handle or be near neodymium magnets.

IRON FILINGS SAFETY

Iron filings are not dangerous but must be handled with care to avoid spills. If iron filings come into direct contact with a magnet, they cannot be removed.

To prevent contamination, avoid opening the iron filings bag whenever possible. If the filings must be taken out, ensure all nearby magnets are sealed in plastic bags before use.

MAGNETISM

This guide includes five hands-on activities that explore magnetism using different types of magnets and magnetic materials. Students will investigate the magnetic properties of materials, how magnets interact, magnetic fields (including Earth's magnetic field), and electromagnetism. These activities connect to a variety of curriculum areas, including general science and physics.

The table below uses a \bigcirc to indicate activities that are best presented as a demonstration or class discussion; a \bigotimes for activities designed to meet targeted learning goals; and \bigcirc indicates the activity is possibly already familiar but may be used as a review; blank for unsuitable.

	Grade K	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7-8	Grade 9-10	Grade 11-12
1 What is Magnetic? 20 mins	<0₹	◆	*		◆	₩				
2 Magnetic Attraction and Repulsion 20 mins	\bigcirc	0	0	0	€	₩				
3 Exploring Magnetic Field Lines 30-45 mins	\bigcirc	0	0	0					☆	☆
4 Make a Compass	()	0	0	0	◆	◆		☆	♦	☆
5 Electromagnet Train 45 mins					0	0	0		∲	 ★

MATERIALS

Included in the Science Kit:

- Bar magnets (2 large, blue and red)
- Block magnets (12 small, colourful)
- Neodymium disc magnets (6)
- Compasses (10)
- Measuring tapes (5)
- Iron filings bags (5)
- Sewing needles (5)
- Copper wire (20 gauge, 2 metres)
- Batteries (2 AAA)
- Dowel (16mm)
- Paper clips

Materials you may need to provide:

- Writing utensils (e.g. pencils, pens, etc.)
- Writing and drawing paper
- An assortment of both magnetic and non-magnetic materials, such as nails, small rocks, nickels/dimes, small pieces of plastic, small pieces of paper, cutlery
- Bowl or other container that can hold water

VIDEOS & HANDOUTS

Videos have been created for each activity in this guide to help explain concepts and activities. You can use these in the classroom! Links to YouTube are provided through the guide. Handouts have also been created to be given to your students to help concretize their lessons, you'll find these at the back of the guide.

THE FOUNDATIONS OF MAGNETISM

Begin by watching the Introduction to Magnetism video with your class!

After watching the intro video and before diving into the activities in this section, you might want to start with a few big-picture questions for your students:

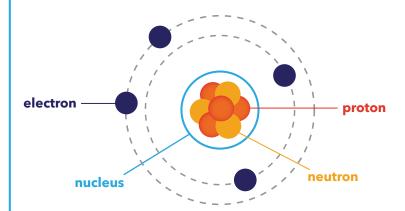
- What is a magnet?
- How can we tell if something is magnetic?
- How do we use magnets in our everyday life?
- What is magnetism?

See if your students agree on some of these answers or if there are differences of opinion, both can lead to great discussions! You can also encourage them to think about where they encounter magnets in daily life, from simple examples like fridge magnets to more advanced technology like MRI (magnetic resonance imaging) machines used in hospitals.

Magnetism is a force that comes from the magnetic properties of matter, causing attraction or repulsion between materials. Whether something is magnetic depends on the properties inside the material. A magnet is any object or material that produces a magnetic force on other materials. While we often think of magnets as being permanently magnetic, there are actually different types of magnets made from different materials. Ferromagnetic materials are particularly affected by magnets, which is why we often call them magnetic materials.

Magnets have an invisible magnetic field around them. This means objects don't need to be touching a magnet to feel its pull or push; the force can act at a distance. The closer something is to the magnet, the stronger the force will be.

Magnetism is also an important force in astronomy as many celestial objects have magnetic fields, like Earth and many other planets. Earth acts like a giant magnet, with north and south magnetic poles. The same is true for the Sun, most stars, and even some celestial objects including black holes! On Earth, the magnetic field protects us from dangerous cosmic radiation and charged particles, and it plays a key role in the creation of the beautiful aurora!


We'll explore these ideas more through the activities in this guide, with specific research connections highlighted along the way.

Advanced Magnetism

Magnetic and electric properties of matter are closely related and influence each other. This is why the term electromagnetism is often used to describe how these forces interact. In this section, we will be focusing on magnetism, but we'll also mention electric properties where it helps explain how magnetic forces work.

All matter is made of atoms, which are very small. Atoms have even smaller particles in them called protons and electrons. Protons carry a positive electric charge and are found in the centre of the atom, called the nucleus. Electrons have a negative charge and move around the nucleus, usually in stable orbits, although they can sometimes move closer or farther away. Electrons can also move freely, outside of atoms.

A visual representation of an atom. There have been many models of the atom throughout history, and this representation is showing the Bohr Model. We know today from quantum mechanics that this isn't quite right, but this representation is helpful for understanding the parts of the atom and for practical applications like in chemistry.

The movement of electrons (or electric charge) is called electricity. Electrons also spin, and it's this combination of moving charge and spin in the atom that creates a magnetic moment, making each electron act like a tiny magnet. Magnetic materials allow stronger magnetic moments both within their atoms and overall for the whole material. In some materials, these magnetic moments line up more easily, creating a stronger overall magnetic effect. The strength of these magnetic moments determines how strong a material's magnetic field is. Like gravity, magnetic forces act through a field; its stronger close to the magnet and weaker farther away.

ACTIVITY 1-2

MAGNETIC SUBSTANCES, ATTRACTION, AND REPULSION

Background & Context

In the next two activities, students explore the magnetic properties of everyday objects by testing and observing interactions with permanent magnets. Activity 1 is recommended for students in Kindergarten and up, while Activity 2 is suitable for students in Grade 4 and up. Both activities offer opportunities to add extra steps or challenge questions for older students –particularly around magnetic poles and magnetic properties. These activities connect directly with general science, physics, and earth science curricula.

For students in **Kindergarten through Grade 3**, Activity 1 is exploratory. Students are encouraged to test everyday objects, observe which are attracted to the magnets, and to look for any patterns or consistent behaviours.

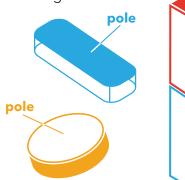
For students in **Grade 4 and up**, Activities 1 and 2 build on the foundations by encouraging students to create hypotheses about which materials are magnetic before they explore with the magnets. They'll test their hypotheses by observing patterns in how the materials respond. In Activity 2, students also explore how the poles of magnets interact and determine the relative strength of magnetic fields by conducting a series of experiments.

Students may notice in Activity 1 that some materials react to the magnets and others do not. Younger students can simply group materials as magnetic or non-magnetic, while older students can take it further by exploring terms like ferromagnetic, diamagnetic, and paramagnetic (see the next section for details).

As students investigate, encourage them to come up with their own explanations for what they observe. For Grades 4 and up, you can help guide the discussion using some of the key concepts listed below

KEY CONCEPTS FOR DISCUSSION

Magnetic Poles


The magnets used in these activities are permanent magnets made of ferromagnetic materials. Magnets always have two poles: a north pole and a south pole. Opposite poles attract each other, while like poles repel.

The location of the poles is different depending on the type of magnet:

Multi-coloured block magnets have their poles on the two largest flat sides.

Bar magnets have their poles at the ends of the longest sides.

Disc magnets have their poles on their faces, the flat circular top and bottom.

Safety note: Disc magnets are not provided for Activities 1 and 2, and we do not recommend using neodymium magnets for these activities.

Dipole

"Dipole" simply means "two poles." All magnets are dipoles, they always have both a north and a south pole.

Magnetic properties

The magnetic properties of a material depend on how easily the atoms in the material form magnetic moments (tiny magnetic forces), especially when near a magnetic field.

Ferromagnetic

Ferromagnetic materials have atoms that easily create strong magnetic moments. When a magnet is nearby, the whole material can act like a magnet and will be attracted to it. Some examples of ferromagnetic elements are iron, nickel, and cobalt. Everyday objects made of ferromagnetic materials include paper clips (iron), dimes and nickels (iron, nickel), metal keys (nickel), sewing needles (iron, nickel), and metal cutlery (iron).

ACTIVITIES 1 - 2 • KEY CONCEPTS

Paramagnetic

Paramagnetic materials have fewer atoms that can align, and their magnetic moments are weaker. They show a slight attraction to magnets, but much less than ferromagnetic materials. Some examples of paramagnetic elements include aluminum, magnesium, molybdenum, and lithium. Everyday objects made of paramagnetic materials include aluminum cans.

Diamagnetic

Diamagnetic materials don't form magnetic moments or dipoles and typically won't react to magnets. In some cases they may be slightly repelled. Most elements are diamagnetic, such as copper, silver, and gold. Many everyday objects are made of diamagnetic materials, including plastics, fabric, and wood.

Temporarily magnetic

Many ferromagnetic materials become temporarily magnetic; their atoms only align in an external magnetic field. However, ferromagnetic materials can become permanent magnets after strong or repeated exposure to a magnetic field. Paramagnetic materials can be temporarily magnetic, but don't typically become permanent magnets.

Notes:			

ACTIVITY 1

WHAT IS MAGNETIC?

Learning Objectives

For students in **Kindergarten to Grade 3**, by the end of this activity, students will be able to:

- Determine materials that can become temporarily magnetic
- Predict which types of materials will react to a magnet

For students in **Grades 4 to 12**, by the end of this activity, students will be able to:

- Determine materials that can become temporarily magnetic
- Predict which types of materials will react to a magnet
- Categorize materials based on their observed magnetic properties and, if desired, compare their findings with the established categories of ferromagnetic, paramagnetic, and diamagnetic

Grades and Timing

This activity is expected to take 20 minutes or less.

Preparation

Estimated preparation time: 15-20 minutes

- Gather all required materials.
- Read through activity steps, hints, activity sheets, associated background information and context, as well as the safety sheet

Materials

- Bar and/or block magnets
- Paper clips
- Magnetic and non-magnetic materials e.g., nails, small rocks, pieces of plastic, coins, small pieces of paper, cutlery, etc.
- Writing materials (e.g. paper, pencils, etc.)

RUNNING THE ACTIVITY

Begin: Watch the video with your students

Divide your class into no more than five groups, ensuring each group has at least two block magnets and several objects they can test for magnetism. Before starting, take a moment to review magnet handling safety with the class.

If you're unsure whether your students can or should handle the magnets, you can lead this activity as a class demonstration, guide discussions, and use the activity sheets.

Step 1: **5 min**

Begin with a short class discussion using prompts like:

- What is a magnet? What does a magnet do?
- What kinds of objects are magnetic, or react to magnets? How do they react?

Guide students toward the idea that some materials can become temporarily magnetic when exposed to a magnet. These materials are attracted to the magnet, and often stick to it, but are not magnets themselves. Magnets, on the other hand, are made of materials that are permanently magnetic.

Step 2: 5-10 min

Students test which materials the magnets can and cannot pick up. Encourage them to look for patterns in how the magnets interact with different materials.

For students in **Kindergarten to Grade 3**, the activity can end here as a hands-on exploration of what is magnetic.

For **Grades 4 and up**, encourage students to sort the tested materials into groups based on how they responded to the magnet. Ask them to come up with names or descriptions for each group. Invite students to share their groupings and discuss any differences or observations as a class.

For a bit of a challenge, you can pose a question for deeper discussion either in small groups or as a class. For example: Why do you think some objects stick to magnets while others don't?

If you've already introduced terms like ferromagnetic, paramagnetic, and diamagnetic, you can bring them back here. If not, this is a great opportunity to begin introducing those categories based on how materials behave in the presence of a magnetic field.

ACTIVITY 1 • RUNNING THE ACTIVITY

Take it Further!

Magnets can pick up certain objects because those objects are ferromagnetic: they become temporarily magnetic when exposed to a magnetic field. When a magnet is brought near a ferromagnetic material, the atoms inside the material align with the magnetic field, causing attraction.

Other materials, like paramagnetic and diamagnetic substances, don't have enough atoms aligning to create a noticeable reaction, so they won't stick to the magnet. Ferromagnetic materials include metals like iron and steel. In contrast, materials like plastic, copper, and glass are diamagnetic and won't react.

Students will likely sort objects into two main groups: those that react to the magnet and those that don't. The first group likely contains ferromagnetic materials, while the second includes a mix of paramagnetic and diamagnetic ones. These are often described simply as magnetic and non-magnetic materials.

Step 3: **5** min

Students are encouraged to build "trains" using magnetic materials. First, they can test how many paper clips they can pick up in a row to make a paperclip chain. Then, they can try stacking magnets to see how many they can pick up the same way.

As a challenge, invite students to think creatively about how to increase the strength of their magnet. This can be set up as a friendly competition between groups to create the longest paperclip train using their best magnet-enhancing ideas. Alternatively, it could lead to a class brainstorm and demonstration.

You might guide the discussion by asking what students know about why magnets can pick up ferromagnetic materials, and what might help increase that effect. One simple method is to stack the magnets so their poles are aligned in the same direction, which strengthens the magnetic field.

This is often easiest to do as a class demonstration using the larger bar magnets:

- Start by testing one bar magnet and recording how many paper clips it can pick up in a chain.
- Then, stack two bar magnets so that the red ends are touching and the blue ends are touching. (You may want to secure them together with a binder clip or rubber bands.)
- Try building a new paperclip train using the stacked magnets, and compare the results with the first test.

ACTIVITY 2

MAGNETIC ATTRACTION AND REPULSION

Learning Objectives

For students in Kindergarten to Grade 3, by the end of this activity, students will be able to:

- Understand magnetic poles, and that they attract and repel
- Test how magnets can interact with each other

For students in Grades 4 and up, by the end of this activity, students will be able to:

- Understand magnetic poles, as well as the concept of attraction and repulsion
- Theorize and test how magnets interact with each other
- Measure the distance of influence of magnets

Grades and Timing

This activity is expected to take 20 minutes or less.

Preparation

Estimated preparation time: 5-15 minutes

- Gather all required materials.
- Read through the activity steps, hints, activity sheets, background information, and safety guidelines in the introduction to the magnetism section.

Materials

- Bar and/or block magnets (2 per group)
- Ruler or measuring tape
- Writing materials (e.g. paper, pencils, etc.)

RUNNING THE ACTIVITY

Begin: Watch the video with your students

Split students into groups of two or three, ensuring each group has at least two magnets and one measuring tape or ruler. Before beginning, take a moment to review magnet handling safety with the class.

If you're unsure whether your students can or should handle the magnets, you can lead this activity as a class demonstration, guide discussions, and use the activity sheets.

Step 1: **5** min

Students try to pick up one magnet with the other, experimenting with different orientations. Ask them to describe what they observe and identify any patterns.

Magnets always have two poles: a north (N) and a south (S):

- Bar magnets have their poles at the ends of their longest sides, usually marked with red and blue colours
- Block magnets have their poles on the largest flat faces and are not colour-coded.
- Opposite poles attract, while like poles repel.

For students in Kindergarten to Grade 3, the activity can end here as a hands-on exploration of how magnets interact.

Step 2: 10 min

Students prepare their space by placing their magnets next to a ruler or measuring tape, with the poles pointed toward each other. They then investigate how the magnets interact as one is moved closer to the other in different orientations along the measuring tape. Encourage students to repeat each test at least twice to ensure accurate results.

For students in Grade 6 and up, consider having them record their measurements with estimated uncertainty and explain any variability in their results.

If you're using measuring tapes, consider taping them down so they stay in place during the activity.

When using bar magnets, lay them flat (horizontally) on the table with the coloured ends pointing along the measuring tape. The poles are at the ends, identified by the red and blue colours.

ACTIVITY 2 • RUNNING THE ACTIVITY

When using block magnets, lay them on their longest, thinnest side, perpendicular to the measuring tape. The poles are located on the large flat faces along the long side.

Step 3: **5** *min*

Students stack the magnets so that their poles are touching; first with opposite poles, then with like poles. Encourage them to reflect on their earlier observations from Step 1 and consider whether their ideas have changed or deepened.

You might also ask students to summarize and share their findings with the class, opening up a discussion about any differences in observations or conclusions.

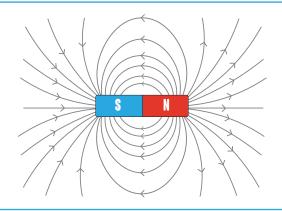
Notes:			

ACTIVITIES 3 - 4

MAGNETIC FIELDS, FIELD LINES, AND COMPASSES

Background & Context

In the next two activities, students discover magnetic field lines around magnets by observing how iron filings and compasses react. It is recommended that students complete Activities 1 and 2 first, as those introduce the foundational concepts of magnets and dipoles. Both activities can be adapted to include extra steps or challenge questions for older students, particularly around magnetic poles, polarity, magnetic fields, and relative field strength. These activities connect directly to general science, physics, and Earth science curricula.


For **Kindergarten to Grade 3**, these activities should be done as an exploratory class demonstration. In Activity 3 you'll explore the shape of magnetic field lines. In Activity 4, students can observe how a compass needle behaves in different orientations around a magnet and look for patterns.

For **Grades 4 and up**, these activities combine hands-on observation with critical thinking. In Activity 3, students identify the shape and direction of the magnetic field around different types of magnets using both iron filings and compasses. They are encouraged to relate their findings to real-world applications, such as navigation and circumstances where a compass might not work effectively.

In Activities 1 and 2, students learned about magnetic poles and how they interact, specifically that like poles repel and opposite poles attract. These interactions are caused by magnetic fields, which are a type of non-contact force (a force that acts without physical contact). Magnetic fields carry the magnetic force and often cause objects to move, as students would observe when bar magnets pushed and pulled each other.

Magnetic fields have both shape and direction. We usually represent them using field lines, which help visualize how the force behaves in space. You can see an example of magnetic field lines around a bar magnet in the diagram below.

A bar magnet with magnetic field lines. Magnetic field lines are not visible, and are illustrated here to show the force field's shape and direction (north to south), indicated by the shape of the line and the direction of the arrow respectively.

ACTIVITIES 3 - 4 • BACKGROUND & CONTEXT

Compasses use Earth's magnetic field to determine direction. The simplest compasses consist of a small piece of ferromagnetic material (the needle) suspended so it can spin freely with minimal resistance. When no other magnets are nearby, the needle aligns with Earth's magnetic field lines.

Earth's magnetic poles are close to, but not exactly aligned with, its geographic poles, so in most locations, compasses point roughly toward geographic North. However, because the magnetic poles shift over time and don't perfectly match the geographic poles, compass accuracy decreases the closer you are to the North or South Pole.

Interestingly, Earth's magnetic poles are also inverted relative to the geographic ones. The magnetic south pole is located near the geographic North Pole, and vice versa.

As students investigate, encourage them to come up with their own explanations for what they observe. For students in Grades 4 and up, you can help guide the discussion using some of the following key concepts.

Notes:			

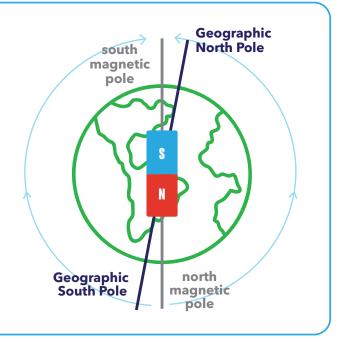
KEY CONCEPTS FOR DISCUSSION

Forces and Fields

A force is an influence on an object that does or could cause the object to move. We often experience contact forces, where two objects must touch to experience the force. Non-contact forces include gravity and magnetism, where forces act at a distance through a force field. Fields describe how forces interact with and through matter. Force fields are often represented by lines in a diagram, and indicate the shape and direction of the force.

Magnetic field

A magnetic field is the force field created by objects with magnetic properties. These fields flow from the north magnetic pole to the south magnetic pole.


Magnetic Poles

Magnets always have two poles: a north and a south. In Activities 1 and 2, we focused on the poles of permanent magnets made from ferromagnetic materials. However, anything that has a magnetic field also has a north and south magnetic pole, including the Earth. While Earth's magnetic poles are close to the geographic poles, they are not located in exactly the same place.

Geographic or Orbital Poles

Geographic or orbital poles are the fixed points at the top and bottom of a spinning object. For Earth and other planets, we usually refer to these as the North and South poles.

The Earth's geographic and magnetic poles don't quite line up. The magnetic south pole is close to the geographic North Pole, which is where polar bears live. The magnetic north pole is close to the geographic South Pole, which is where penguins live. A compass will follow the magnetic field lines of the Earth's magnetic field, which flows from magnetic north to magnetic south, and therefore points towards the geographic North Pole. The difference between the geographic poles and magnetic poles is more noticeable the closer to the poles you travel.

Research Connections

Magnetic fields are a key feature of star-forming regions and give astronomers important clues about what's happening as stars are born. Stars usually form in areas filled with hot gas that becomes compressed over time. This gas is ionized, meaning some of its atoms have gained or lost electrons because of the intense heat. The movement of these electrons generates a magnetic field, which plays a role in shaping how stars form. They can influence what types of stars emerge from the gas and how quickly the process happens.

Studying ionized gas to learn more about star formation is an active field of research. Laurie Rousseau-Nepton leads the SIGNALS project, which stands for the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey. This and related projects are analyzing star-forming regions to identify how the local environment affects young star cluster characteristics, including the strength and shape of the magnetic fields within.

We know that Earth has a magnetic field and that its magnetic poles don't line up with its geographic poles. Earth isn't the only planet with a magnetic field, many others, including Saturn and Jupiter, have one too. However, scientists are still working to understand exactly how planets generate these fields.

Current research suggests that, much like a spinning electron creates a magnetic moment, the rotation of Earth's molten core generates its magnetic field. Earth, like many terrestrial planets, is not solid all the way through. We live and play on the surface, called the crust. Beneath it are layers of magma (very hot, liquid rock). When magma reaches the surface, we call it lava. At the centre of the planet is a core made mostly of iron, a ferromagnetic material, that spins within the magma. This movement of iron through ionized molten rock, where electrons move more freely, is what researchers believe generates Earth's magnetic field. This process is known as the "dynamo effect," and it remains an active area of scientific investigation.

Interestingly, Earth's core doesn't necessarily spin along the same axis as the rest of the planet, which helps explain why the magnetic poles don't align perfectly with the geographic poles. Now think about other terrestrial (rocky) planets and celestial objects. Which ones do you think have a magnetic field? Why or why not?

Using the idea of the dynamo effect, we can guess that objects without a noticeable magnetic field might not have a spinning core at their centre. This is what we find with Mars and the Moon: both are considered "geologically dead," meaning there is little or no movement happening beneath their surfaces. In the case of Mars, we know that it once had a magnetic field because we can still see traces of it in rocks on the surface. Some of these rocks are permanently magnetized, suggesting that Mars once had a strong magnetic field created by a dynamic interior.

ACTIVITY 3

EXPLORING MAGNETIC FIELD LINES

Note: Normally, a compass needle points away from the magnet's north pole and toward its south pole. However, if the compass needles were re-magnetized by being stored near other magnets, they may flip and point in the opposite direction. Even so, the overall shape of the magnetic field will still be visible.

Learning Objectives

For all students, by the end of this activity, students will be able to:

- Assess the shape and direction of a magnetic field
- Realize that magnetic forces can act even without contact
- Understand that magnetic fields become weaker or stronger at different distances

Grades and Timing

This activity is expected to take 30 minutes or less for students in Grades K - 5, and up to 45 minutes for students in Grades 6 and up.

For students in Kindergarten to Grade 3, we recommend doing this activity as a class demonstration.

Preparation

Estimated preparation time: 5-15 minutes

- Gather all required materials.
- Read through activity steps, hints, activity sheets, associated background information and context, as well as safety concerns from the introduction of the magnetism section.

Materials

- Bar and/or block magnets
- Compass
- Iron fillings bags (5)
- Neodymium magnets (optional)
- Tissue box or other thin, small cardboard box (optional)
- Small plastic bags (optional)
- Writing materials (e.g. paper, pencils, etc.)

RUNNING THE ACTIVITY

Begin: Watch the video with your students

Divide students into no more than five groups, ensuring each group has at least one bag of iron filings and one or two bar or block magnets. Before starting, take a moment to review magnet-handling safety with the class.

If you're not sure whether your students can or should use the magnets, you can lead this activity as a class demonstration and discussion. Similarly, if you're unsure whether older students should handle the iron filings outside their original bag, consider doing those parts of the activity as a class demonstration and discussion instead.

Step 1: 5 min

Consider starting with a short class discussion using prompts like:

- How do magnets interact with each other?
- What does "temporarily magnetic" mean? How does an object become temporarily magnetic?
- What does it mean for something to be permanently magnetic?
- What is a "field"?

Guide students to recall their experiences in Activities 1 and 2, where they found that magnets have two poles. Like poles repel each other, while opposite poles attract.

Step 2: 5-10 min 🗥

Students use the bag of iron filings to illustrate the magnetic field lines around a single magnet. Encourage students to lay the bag flat on a surface, then place the magnet on top. They may need to gently shake the bag with the magnet resting on it to help the iron filings align along the magnetic field lines. Remind students to keep the bag sealed at all times. If you're doing a class demonstration, consider using an overhead projector or a live camera feed to display the view from above on a smart board or screen.

Ask students to describe what they see and explain it based on what they already know about magnets and ferromagnetic materials like iron. Encourage them to move the magnet across the bag and experiment with different orientations to see how the pattern changes. Specifically, have them try laying the bar magnet on its longest side, and the block magnet on its narrowest or thinnest side.

ACTIVITY 3 • RUNNING THE ACTIVITY

The poles are located on different faces depending on the magnet: bar magnet poles are on either end, while block magnet poles are on the largest flat faces. See illustration on page 5 for reference.

Students should observe that the magnetic field is stronger closer to the magnet and weaker further away. This is shown by more iron filings aligning close to the magnet, and fewer or none aligning farther away.

Step 3: **5-10 min**

Students in Grades 4 and up investigate the magnetic field lines further by using one or more compasses and comparing what they observe to the patterns formed by the iron filings. Encourage students to move the compass around the entire magnet and note how the needle reacts at different positions.

Students can ignore the N, S, E, and W markings on the compass and simply focus on how the arrow moves in response to the magnet.

Students should find that the compass needle changes direction as it gets closer to the magnet, aligning with the magnet's magnetic field. They will notice that the compass needle points in the same direction as the iron filings at the same locations around the magnet.

Step 4: 5-10 min

Students investigate how the field lines change in different situations:

- What happens when the orientation of the magnet is flipped? Students will not see anything change with the iron filings. However, when using the compass, they should find that the direction of the magnetic field shifts.
- How do the field lines change when using more than one magnet?

 Depending on the orientation of the magnets, students may observe the magnetic field lines either connecting between the magnets or diverging from one another.

Step 5: 10-15 min 🕚

For students in Grades 6 and up, take the investigation further by observing the magnetic field lines using iron filings in more detail. If your materials allow the filings to be sprinkled, students can gently sprinkle them into a tissue box or shallow cardboard container over one or more magnets to see the patterns more clearly. If using sealed bags of iron filings, students can continue exploring by placing magnets on or around the bag in different orientations, as in Step 2.

Students compare what they observe here with the patterns they saw earlier in Steps 2 and 3, reflecting on similarities and differences.

ACTIVITY 3 • RUNNING THE ACTIVITY

If sprinkling filings, the bar or block magnets should be placed in sealable plastic bags beforehand to avoid direct contact with the filings, ensuring the materials stay separate. Remind students not to remove the magnets from their plastic bags until all iron filings have been safely returned to their container. This helps prevent filings from sticking to the magnets or scattering across the workspace.

Step 6: 10 min 🗥

This final challenge step is best done as a demonstration or with students in Grade 9 and up. Students are encouraged to make predictions about how the magnetic field of neodymium magnets might be similar to or different from that of the bar and block magnets. They then test their hypotheses by repeating Steps 2 to 5 using the neodymium magnets.

The behaviour of the magnetic field will follow the same patterns, but it will be significantly stronger. The magnetic poles of neodymium magnets are typically on the flat top and bottom surfaces, so the field will appear to emerge from those faces.

If you're short on time, consider putting the iron filings back in their bag and only repeating Steps 2 and 3 with the neodymium magnets.

Notes:			

ACTIVITY 4

MAKE A COMPASS

Learning Objectives

For students in **Kindergarten to Grade 3**, by the end of this activity, students will be able to:

- Recognize that the magnetic force can be used to create a compass
- Understand that the Earth acts like a giant magnet with north and south magnetic poles

For students in **Grades 4 to 12**, by the end of this activity, students will be able to:

- Explain that the magnetic force can be used to create a compass
- Recognize that ferromagnetic materials can become temporary magnets
- Understand that the Earth acts like a giant magnet with North and South Poles

Grades and Timing

This activity is expected to take 30 minutes or less.

For students in Kindergarten to Grade 3, we recommend doing this activity as a class demonstration.

Preparation

Estimated preparation time: 15-20 minutes, 30 minutes for young students if doing a demonstration

- Gather all required materials.
- Read through activity steps, hints, activity sheets, associated background information and context, as well as safety concerns from the introduction of the magnetism section.
- For students in **Kindergarten to Grade 5**: Complete Step 1 ahead of time if the needle is not already magnetized. You can test whether it's magnetized by trying Steps 2 and 3.

Materials

- Bar and/or block magnets
- Sewing needle
- Small bowl of water
- Small piece of paper, card paper, or cardboard
- Writing materials (e.g. paper, pencils, etc.)

RUNNING THE ACTIVITY

Begin: Watch the video with your students

Divide students into no more than five groups, ensuring each group has one sewing needle and one bar or block magnet. Before beginning, take a moment to review magnet-handling safety with the class.

If you are not sure whether your students can or should handle the magnets or the sewing needle, you can instead lead this activity as a class demonstration and discussion. For students in Kindergarten to Grade 3 it is recommended to do this activity as a class demonstration.

Step 1: **5** min

Students magnetize their sewing needle, if it hasn't already been done. For students in Kindergarten to Grade 5, consider magnetizing the needles ahead of time or demonstrating the process to the class.

To magnetize the needle, rub the tip of the sewing needle along the magnet in one direction only. Repeat this motion at least 20 times, always in the same direction. This process turns the needle into a temporary magnet.

Step 2: **5-10 min**

Students create a simple compass using the sewing needle, a bowl of water, and a small piece of paper or cardboard. The paper should be placed on the surface of the water, with the needle carefully placed on top. This allows the needle to float freely and align with the magnetic field.

You can have students discuss the following questions in their groups before sharing with the class, or lead a full-class discussion:

- What do you know about compasses?
- Does the compass you made behave as you would expect? Why or why not?
- Would you trust this compass to guide you if you were lost? Why or why not?

If the needle doesn't turn or align North, try remagnetizing!

Step 3: **5-10 min**

Students place the magnet near their compass needle and move the magnet around, observing how the needle responds to the magnetic field. This marks the end of the activity for students in Kindergarten through Grade 5.

ACTIVITY 4 • RUNNING THE ACTIVITY

Rubbing the needle with a magnet causes the electrons in the needle's atoms to align, making it temporarily magnetic.

The paper and water allow the needle to float and turn freely. You can invite students to brainstorm other ways this could be done.

Students in Grades 6 and up are encouraged to reflect on two key questions:

- Why did we rub the needle on the magnet?
- Why was the compass set up using paper and water?

At either magnetic pole, the magnetic field lines are perpendicular to the Earth's surface, they point straight up or down. This means that if a compass is held flat, it may spin or point in a random direction. If the compass can move in three dimensions, it would point straight down at the magnetic south pole and straight up at the magnetic north pole. You may also want to remind students that the Earth's magnetic poles are named opposite to its geographic poles and do not align perfectly with them.

Step 4: 5-10 min

For students in Grades 6 and up, ask them to consider how their compass would behave at the magnetic north or south pole. Encourage students to be creative in their thinking. You may want to guide the discussion based on what they know about the direction of magnetic field lines at the poles of a magnet.

Notes:		

ACTIVITY 5

ELECTROMAGNET TRAIN

Background & Context

In Activity 5, students explore the interaction between electricity and magnetism through a demonstration of an electromagnetic train. It is recommended that students complete Activities 3 and 4 beforehand, as this activity builds on foundational concepts of magnetism and magnetic fields. Activity 5 is not recommended for students below Grade 4. It offers opportunities to add more steps and challenge questions for older students, particularly around magnetic fields, electric circuits, and electromagnetism. This activity connects directly with general science and physics curricula.

For students in **Grades 4 through 8**, Activity 5 is exploratory and should be done as a demonstration. Students observe the behaviour of the electromagnetic train and are encouraged to apply their understanding of magnets to explain what is happening.

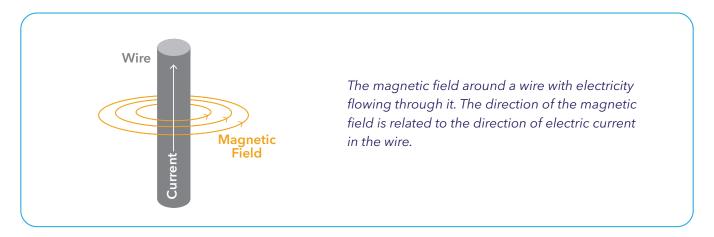
For students in **Grade 9 and up**, Activity 5 combines hands-on observation with critical thinking. Students are encouraged to create and test hypotheses to investigate how changes affect the electromagnetic train's behaviour.

Electricity and magnetism are related. We often refer to them together as electromagnetism. There's a rich history of how scientists discovered the connection between these forces, and we benefit from that work every day through technologies like batteries and electric motors.

For Activity 5, we'll focus on one key part of electromagnetism: that moving electric charges create a magnetic field.

Moving electric charges –especially electrons– are what we call electricity. We experience electricity constantly: when we turn on lights, use and charge appliances, and more. Electricity also exists in nature, such as in lightning or in the electrical signals in our brains!

Think about electrical appliances. They usually have a cord that connects them to an outlet. This cord contains at least two wires, which connect the appliance to the electric current in your home. When plugged into an outlet, electricity flows through the wires, and that moving charge creates a magnetic field around them.


In Activities 3 and 4, we explored the magnetic field around permanent magnets. Remember that force fields show the shape and direction of a force, and the more field lines you see, the stronger the force in that region. Permanent magnets have two poles, a north and a south, with magnetic field

ACTIVITY 5 • BACKGROUND & CONTEXT

lines flowing from north to south. This directional flow is what causes opposite poles to attract and like poles to repel.

A moving electric charge, such as electricity flowing through a wire, isn't the same as a permanent magnet, so the magnetic field it creates looks different. Around a live wire, the magnetic field wraps in circles around the wire, as shown below.

While a straight wire carrying electricity produces a circular magnetic field around it, that field doesn't resemble the kind we see around a bar magnet. But if we take that wire and form it into a loop, something interesting happens: the magnetic field created by the moving electric charge through the loop starts to resemble the magnetic field of a permanent magnet.

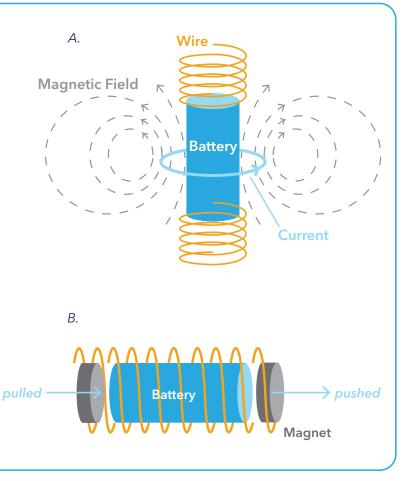
This loop doesn't have physical or "tangible" magnetic poles like a bar magnet does. Instead, the magnetic field flows through the centre of the loop and spreads out around it in a similar shape to that of a bar magnet's field.

When you bring a permanent magnet close to the loop, the two magnetic fields interact just like two magnets would: opposite magnetic poles attract, and similar poles repel. However, because the loop doesn't have defined magnetic poles that stick out like a magnet's ends, the magnet won't latch on or stick to the loop. Instead, it will pass through or be pushed away depending on the interaction of the fields (diagram on following page).

Batteries store energy. Most household batteries, like AA and AAA, store energy as chemical potential energy. This means the energy isn't being used right away but can be converted into a usable form later. When a battery is placed in a circuit, such as in a flashlight, its chemical potential energy is transformed into electrical energy, or electricity.

ACTIVITY 5 • BACKGROUND & CONTEXT

The simplest circuit you can make is a loop of wire with each end touching opposite ends of a battery. This setup drains the battery's energy very quickly, a process often called "shorting out" the circuit or the battery. In Activity 5, we'll intentionally create a short circuit using copper wire and a battery.


Placing the battery inside uniformly coiled copper wire creates a closed circuit that allows electricity to flow. As electricity moves through the wire, each loop generates a magnetic field. These magnetic fields all point through the centre of the coiled loops.

To create the electromagnetic train, magnets are placed on either end of the battery before it's inserted into the coil. These magnets interact with the magnetic field generated by the flowing electricity. When both magnets are oriented with the same poles facing outward, one magnet is pulled forward by the magnetic field and the other is pushed, causing the battery and magnets to move through the coil.

When a battery is connected to a copper wire, a circuit is created and current flows through the wire. The current produces a magnetic field around the wire, which is influenced by the direction of the current.

When a current-carrying wire is looped, the magnetic field flows through the centre of the loop and curves back around the outside, as pictured in figure A.

When a current-carrying wire is coiled (many loops in a row), the magnetic field is concentrated through the centre of the coil, strengthening the magnetic field. This acts like a bar magnet with a north and south pole, which then pushes and pulls magnetic materials, depicted in figure B.

KEY CONCEPTS FOR DISCUSSION

Electromagnetism

Electromagnetism describes the relationship between electricity and magnetism. Scientists have discovered that moving electric charges produce a magnetic field, and changing magnetic fields can generate electricity. These two forces are deeply connected and are often studied together. Electromagnetism is what makes motors, generators, and many everyday technologies work.

Electricity

Electricity is the flow of electric charge, usually carried by electrons. It moves through wires in a circuit and can be used to power lights, motors, and other devices. When electricity flows through a wire, it creates a magnetic field around the wire. This connection between electricity and magnetism is what drives the electromagnetic train in this activity.

Magnetic field

A magnetic field is the area around a magnet or a moving electric charge where magnetic forces can be felt. You can think of it as an invisible pattern that shows the direction and strength of the force. In this activity, the magnetic field is created by the flow of electricity through the copper wire and interacts with the magnets on the battery to push the train forward.

Energy, Potential Energy

Energy is the ability to do work or cause change. Batteries store potential energy, which is energy waiting to be used. In this case, it's stored as chemical energy. When the battery is placed into a circuit, the potential energy becomes electrical energy, powering the flow of electricity through the wire. That electrical energy then creates a magnetic field, which is part of the demonstration in this activity.

Notes:			

Learning Objectives

For students in **Grade 4 to Grade 8**, by the end of this activity, students will be able to:

- Describe electromagnetism and its relevance to everyday life
- Identify magnetic forces
- Categorize different types and forms of energy

For students in **Grades 9 to 12**, by the end of this activity, students will be able to:

- Describe electromagnetism and explain how electromagnetism applies to real-world technologies
- Identify magnetic forces
- Categorize different forms and types of energy
- Infer the shape and direction of a magnetic field by analysing how it affects nearby magnets or objects
- Optional: Apply the right-hand rule to determine the direction of magnetic fields around current-carrying wires

Research Connections

In this activity, you'll explore the connection between electricity and magnetism. In previous activities, you explored how planets can have magnetic fields. We saw the effects of Earth's magnetic field using a compass.

Aurora are among the most visible effects of a planet's magnetic field. When charged particles from solar wind reach a planet with a magnetic field, they are guided along magnetic field lines toward the poles. There, they collide with gases in the upper atmosphere (often oxygen or nitrogen) producing glowing light displays known as aurora. On Earth, these are called the aurora borealis (northern lights) and aurora australis (southern lights). Similar displays have been observed on planets like Jupiter and Saturn, confirming the presence of strong magnetic fields.

Not all planets or moons have magnetic fields, but whether or not they do can have a big impact.

Planets without magnetic fields are more vulnerable to solar wind, which can gradually strip away their atmospheres. This may be what happened to Mars. Today, Mars doesn't have a global magnetic field, but rocks on its surface are magnetized. These rocks suggest Mars once had a magnetic field, which protected it long ago, but that field no longer exists today.

ACTIVITY 5 • RESEARCH CONNECTIONS

We can also learn about ancient magnetic fields by studying the magnetized rocks on Earth, the Moon, and Mars. These rocks act like tiny record-keepers, preserving the direction and strength of the magnetic field at the time they formed.

Understanding which celestial bodies have magnetic fields, and which ones used to, helps astronomers learn more about a planet's history, internal structure, and potential to support life.

Grades and Timing

This activity is expected to take 45 minutes or less.

Preparation

Estimated preparation time: 20 - 30 minutes.

- Gather all required materials.
- Read through activity steps, hints, activity sheets, associated background information and context, as well as safety concerns from the introduction of the magnetism section
- Wrap the copper wire tightly around the dowel to form even coils. It may help to tape one end of the wire to the dowel to hold it in place while you wrap. If the coil is kinked or uneven, the train may not work properly.

Materials

- Neodymium magnets (6)
- AAA batteries (2)
- Copper wire
- Dowel
- Tape (optional)
- Writing materials (e.g. paper, pencils, etc.)

RUNNING THE ACTIVITY

Begin: Watch the video with your students

Because this activity uses neodymium magnets, we recommend running it as a class demonstration for all students. For Grades 9 and up, you may choose to let students take turns investigating and pushing the train themselves.

Before you begin, take a moment to review magnet-handling safety with the class.

Step 1: **5-10 min**

Start with a short class discussion using prompts like:

- What is an electromagnet? How is it different from a bar magnet or ferromagnet object?
- Have you heard of "electromagnetism" before? How is it different from magnetism? What do you know about electricity?
- What are batteries? How do they work?

Electromagnets rely on both electricity and magnetism to work. While they can operate in different ways, they always depend on the interaction between these two forces.

Batteries store energy, usually as chemical potential energy. When connected to a circuit, a chemical reaction inside the battery produces electricity.

Step 2: **5 min**

Assemble the electromagnetic train:

- 1. Slide the coil off the dowel and lay it on a flat surface. Adjust the spacing/shape of the coil as needed, so the coils do not touch each other.
- 2. Split the neodymium magnets into two sets of 3. They are very strong magnets, so be careful not to pinch yourself!
- 3. Place the two sets of magnets on either end of the battery.

Make sure there are no kinks in the wire. The train will not work if there are uncurved or pointed areas on the wire.

Make sure the magnets are attached straight to the battery (not crooked) and in the correct orientation. The two groups of magnets should repel each other if the battery isn't between them. See following diagram for reference.

ACTIVITY 5 • RUNNING THE ACTIVITY

Without the battery, magnets are repelled from each other

How to assemble the disc neodymium magnets and the AAA battery for the electromagnetic train. The six magnets should be split into two groups of three, and should repel each other without the battery in place. The magnets will attach to the ends of the battery.

Step 3: 20-30 min

Place the battery-magnet system inside one end of the coil and give it a gentle push. It should glide through the coil. For students in Grade 9 and up, consider allowing them to take turns pushing the electromagnetic train. Students are encouraged to experiment with different variations and test their hypotheses, for example, how to make the train go faster, or why its orientation matters.

If the battery-magnet system gets stuck in the coil, try giving the coil a gentle shake.

If the system won't move, flip it around and try again. Ask students to think about why the train only works in one direction. Encourage them to consider the magnetic field of the magnets and how it interacts with the current in this orientation.

The train will only work with a coil made from an electrically conductive material like copper. Copper works well with a small battery because it is highly conductive. Most other metals won't work for this setup, except for silver.

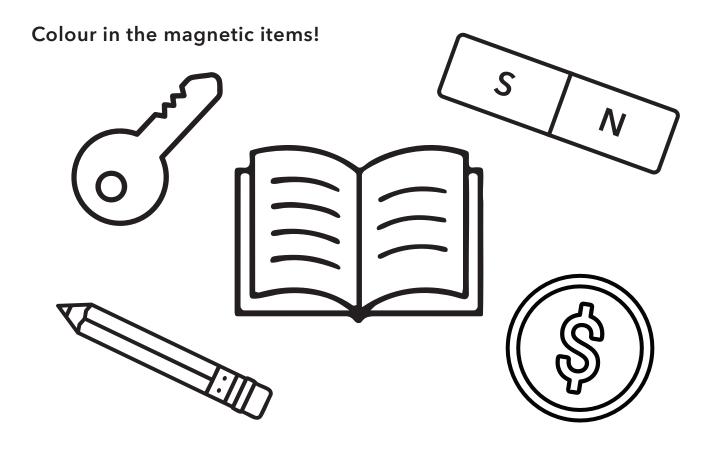
Using more magnets increases the strength of the magnetic field and makes the train move faster.

Take it further!

For high school students, consider introducing the right-hand rule to find the direction of the magnetic field around a wire with current. Ask students to draw a diagram showing what's happening in the electromagnetic train, including the direction of current and the shape of the magnetic fields involved. This will require some inductive reasoning!

MAGNETISM

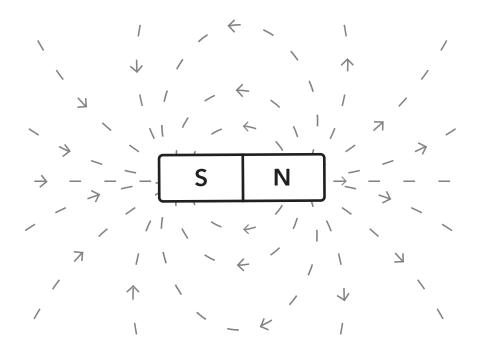
STUDENT HANDOUTS AND ACTIVITY SHEETS


Complementary and optional activities for your learners!

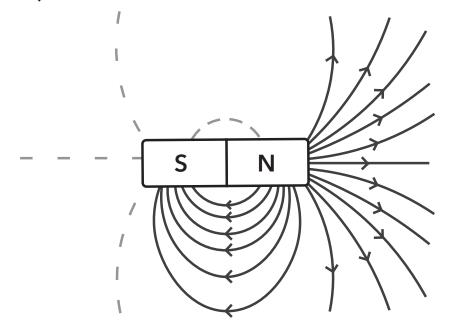
Kindergarten – Grade 3

Draw 1 or 2 things you found that were magnetic!

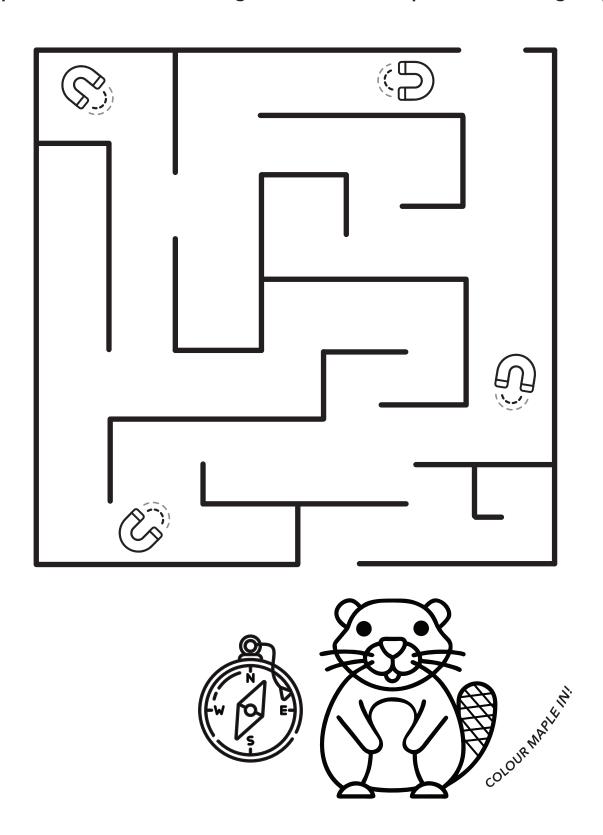
ACTIVITY 2: MAGNETIC ATTRACTION AND REPULSION


Colour the magnets: the N side is red, the S side is blue.

Connect the magnets: Green for attraction and purple for repulsion.


Draw something you noticed while experimenting with the magnets!

Trace the lines to discover the magnetic field!

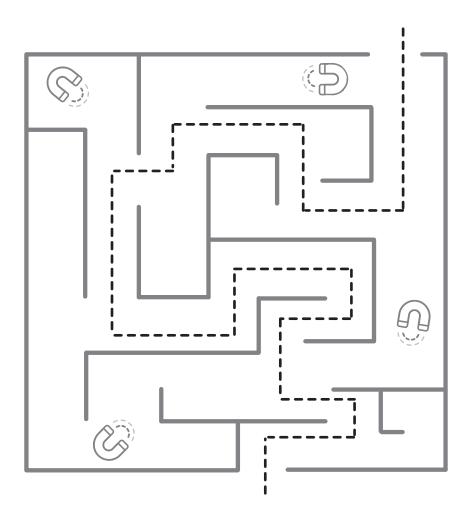


Colour the N side red and the S side blue then finish the magnetic field by drawing the missing lines. Make the arrows go the right way (north to south).

Help Maple the Beaver find her way through the maze. Use her compass, but be careful! Magnets can make it point the wrong way.

Activity 1

The key, coin, and magnet bar are magnetic.


Activity 2

Green lines should connect N to S, and purple lines should connect N to N or S to S. So, in order: Green line, green line, purple line.

Activity 3

Watch for symmetry and completion. Arrows should always point away from north and toward south.

Activity 4

MAGNETISM

STUDENT HANDOUTS AND ACTIVITY SHEETS

Complementary and optional activities for your learners!

Grade 4 – 6

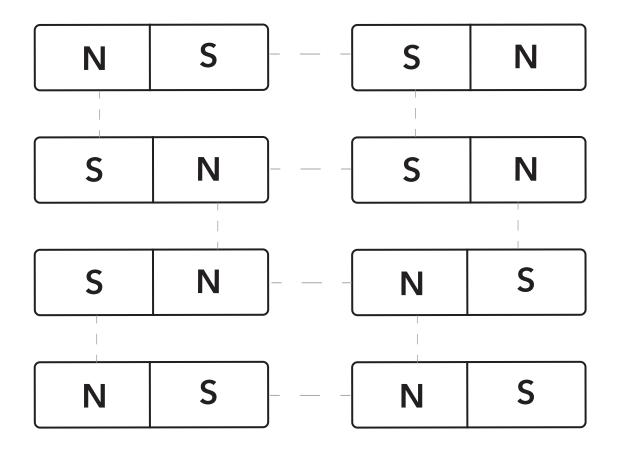
List items you tested in the correct column.

Magnetic Not Magnetic

Circle the correct answer.

A. Only some metals are magnetic.	TRUE	FALSE
B. You can pick up a paperclip with a magnet.	TRUE	FALSE
C. Copper wire is magnetic.	TRUE	FALSE
 D. A magnet can attract an object even if it's not touching it. 	TRUE	FALSE
E. If something sticks to a magnet, it must be metal.	TRUE	FALSE
F. Magnets can push and pull.	TRUE	FALSE
G. Magnets can still work through plastic.	TRUE	FALSE
H. Magnets always attract each other.	TRUE	FALSE

ACTIVITY 2: MAGNETIC ATTRACTION AND REPULSION



Fill in the Blanks!

Magnets have two ends called the ______ and _____ poles. Opposite poles _____ each other, and identical poles _____ each other. The invisible area around a magnet where magnetic forces can be felt is called the magnetic _____. Some common metals that magnets attract are _____, ____, and nickel. Magnet can attract objects even if there is space between them

KEYWORDS: iron • repel • steel • north • south • copper • field • space • attract


Here's a set of magnets. Colour them in: S = Blue (south), N = red (north). Look at the magnets both across and up and down. Trace the lines between poles: green for attraction, and purple for repulsion.

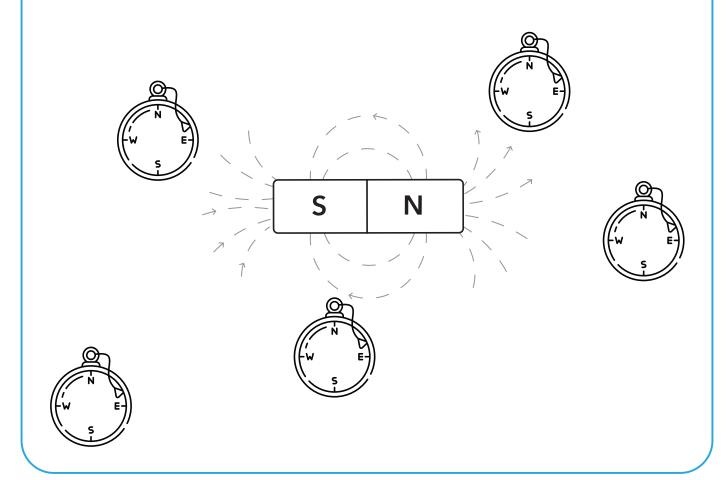
ACTIVITY 3: EXPLORING MAGNETIC FIELD LINES

Fill in the Magnetic Field lines and make sure the arrows point the right way!

S	N		N	S
----------	---	--	---	---

Circle the correct answer.

A. Magnetic field lines go from the north pole of a magnet	TRUE	FALSE
to the south pole.		


B. The magnetic field is strongest in the middle of a bar	TRUE	FALSE
magnet.		

E. The magnetic field exists even if nothing is touching the	TRUE	FALSE
magnet.		

ACTIVITY 4: MAKING A COMPASS

These compasses are missing their arrows! Draw them in so that they're pointing the right way. Hint: Pay attention to the magnetic field they're near!

Fill in the Blanks!

Α	_ is a tool used [.]	for finding direction. To mak	e your own compass, you can
use a	needle. Ru	ıbbing the needle with a	will make it magnetic.
The needle	e of a compass ι	usually points toward the	Pole and the opposite
end points	toward the	Pole. The other two m	nain directions are
and	When you	bring a magnet close to the	e compass, the needle will
move beca	use of the magi	net's	

KEYWORDS: magnet • plastic • metal • pull • push compass • North • East • West • South

ACTIVITY 5: ELECTROMAGNET TRAIN

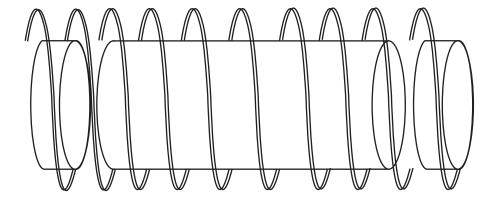
Fill in the Blanks!

An	$_{ extsf{L}}$ is a magnet made usin	ng electricity. In the electromagnetic train, a
battery make	s electricity flow throug	gh the wire. This electricity creates a
field. The ma	gnets on the	push and pull against this field, making the
battery move	through the	

KEYWORDS: copper • battery • coil • magnetic • electromagnet

Draw a line to match each action with what happens to the train:

A. Add more magnets Train does not move

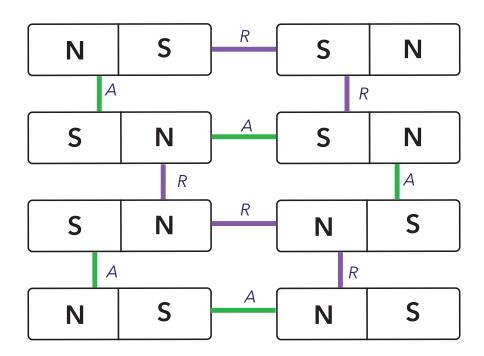

B. Flip the train around Train goes faster

C. Use a non-metal coil

Train moves in the other direction

D. Make the coil out of copper Train works normally

Colour the magnets red on their poles. Draw arrows to show which way the train will move in the coil. Label the battery, magnets, and coil.



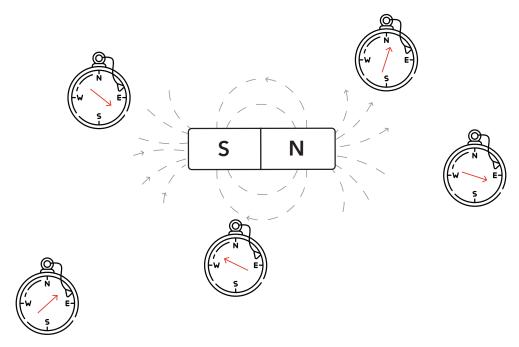
Activity 1

- A. Only some metals are magnetic. TRUE
- B. You can pick up a paperclip with a magnet. TRUE
- C. Copper wire is magnetic. FALSE
- D. A magnet can attract an object even if it's not touching it. TRUE
- E. If something sticks to a magnet, it must be metal. TRUE
- F. Magnets can push and pull. TRUE
- G. Magnets can still work through plastic. TRUE
- H. Magnets always attract each other. FALSE

Activity 2

Magnets have two ends called the **north** and **south** poles. Opposite poles **attract** each other, and like poles **repel** each other. The invisible area around a magnet where magnetic forces can be felt is called the magnetic **field**. Some common metals that magnets attract are **iron**, **steel**, and nickel. Magnets can attract some objects even if there is **space** between them.

4-6 ANSWER KEY CONTINUED



Activity 3

The lines should look like the diagram on page 13 of this guide. But question D is trickier since the magnet is flipped, the arrows should go in the other direction!

- A. Magnetic field lines go from the north pole of a magnet to the south pole. TRUE
- B. The magnetic field is strongest in the middle of a bar magnet. FALSE
- C. Opposite poles attract, and identical poles repel. TRUE
- D. You can see the shape of a magnetic field by using iron filings. TRUE
- E. The magnetic field exists even if nothing is touching the magnet. TRUE

Activity 4

Note: If the compass has been re-magnetized by being stored near the magnets, the arrow will still line up the same way, but it may point in the opposite direction.

A **compass** is a tool used for finding direction. To make your own compass, you can use a **metal** needle. Rubbing the needle with a **magnet** will make it ferromagnetic. The needle of a compass usually points toward the **North** Pole and the opposite end points toward the **South** Pole. The other two main directions are **east** and **west**. When you bring a **magnet** close to the compass, the needle will move because of the magnet's **pull**.

4-6 ANSWER KEY CONTINUED

Activity 5

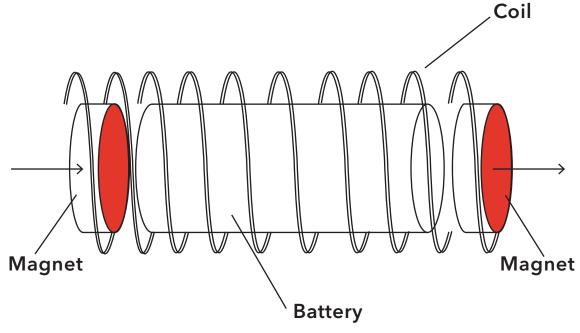
Fill in the Blanks: An **electromagnet** is a magnet made using electricity. In the electromagnetic train, a battery makes electricity flow through the **copper** wire. This electricity creates a **magnetic** field. The magnets on the **battery** push and pull against this field, making the battery move through the **coil**.

Draw a line to match each action with what happens to the train:

A. Add more magnets

B. Flip the train around

Train goes faster


C. Use a non-metal coil

Train moves in the other direction

D. Make the coil out of copper

Train works normally

Expect labels and colours to look similar to this:

MAGNETISM

STUDENT HANDOUTS AND ACTIVITY SHEETS

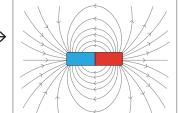
Complementary and optional activities for your learners!

Grade 7 – 12

ACTIVITY 1: WHAT IS MAGNETIC?

- 1. Use the bar and block magnets provided to explore which materials interact with magnets, then answer the following questions:
 - a. What happens when you bring the magnet close to different objects?
 - b. Which materials were you able to pick up using a magnet? Do they have anything in common?
- 2. Some objects that are strongly attracted to a magnet can temporarily become magnets themselves; these are called **ferromagnetic** materials. **Test a paper clip:** attach it to a bar magnet, then touch it to another paper clip. Does it stick? How many paper clips can you stack this way?
- 3. Objects that show no reaction to a magnet are called **diamagnetic**. **List four objects you found that were diamagnetic**. **Do you think they can become temporary magnets like paper clips? Why or why not?**
- 4. **How do magnets react to each other?** Can you pick up a block magnet using a bar magnet from any angle? Why or why not?
- 5. Cores of planets, like Earth's, can be made of magnetic materials, turning the entire planet into a giant bar magnet. This can reveal a lot about what's happening inside the planet. If Earth's core is magnetic, should it affect the magnet in your hand? Explain why or why not.
- 6. List three examples of magnets or magnetic materials used in everyday life. For each one, explain why magnetism is useful in that object or device.
- 7. In your own words, define the following magnetic terms:
 - a. ferromagnetic:
 - b. diamagnetic:
 - c. magnetic poles:
 - d. paramagnetic:
- 8. Challenge: Devices like metal detectors often use magnets to detect metallic objects.
 - a. Are all metals magnetic? Test your bar magnet with the copper coil in your kit and with aluminium foil or a can.
 - b. If all metals aren't magnetic, how might a metal detector still find them? Could it have to do with how metals behave in the presence of a magnet? Discuss.

ACTIVITY 2: MAGNETIC ATTRACTION AND REPULSION



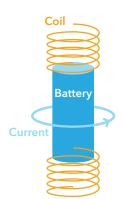
- 1. Bring two bar magnets close to each other and observe how they interact.
 - a. True or False. All magnets attract each other, no matter the angle you try to connect them. Then explain why or why not.
 - b. True or False. The closer two magnets are, the stronger they attract or repel each other. Then explain why or why not.
- 2. Use a ruler to measure how far apart two magnets can be before they start to attract or repel each other. If you have different magnets, compare their strength. Remember: a stronger magnet's field extends farther, so it will start affecting other magnets at a greater distance. Repeat your measurements a few times for accuracy.
 - a. Which magnets would you call strong?
 - b. Which would you call weak?
 - c. Compare and discuss your findings with one or more other students.
- 3. Place one magnet on top of another of the same kind and note what happens. Then, flip the top magnet around and observe again.
 - a. Which orientation made it easier for the magnets to stick together?
 - b. Explain why that happened.
- 4. Opposite poles of a magnet attract, while identical poles repel. **Choose the correct word for each statement:**
 - a. Two north poles of a magnet will (attract/repel) each other.
 - b. The north pole of a magnet and south pole of another magnet will (attract/repel) each other.
 - c. Two south poles of a magnet will (attract/repel) each other.
- 5. If you place a strong magnet near a paperclip without touching it, the paperclip moves toward the magnet.
 - a. Is this an example of attraction or repulsion?
 - b. What does this tell you about how magnetic forces can act over a distance?
- 6. Challenge: Magnetic force is responsible for the attraction and repulsion of magnets.
 - a. Can you think of any other examples of forces?
 - b. Can these forces pull (attract) or push away (repel) objects like magnets do?
 - c. Can these forces act at a distance, like magnets?
 - d. Explain your ideas and give examples.

ACTIVITY 3: EXPLORING MAGNETIC FIELD LINES

- 1. Magnetic field lines help us understand how a magnet will affect magnetic materials, since we can't see the actual pull or push. Can you think of another force where you can see an object move, but you can't see what's pulling or pushing it?
- 2. Circle the correct answer!
 - a. Magnetic field lines start at the north pole and end at the south pole. TRUE FALSE
 - b. Earth's magnetic field lines start at the geographic north pole and end at the geographic south pole. TRUE FALSE
 - c. Compass needles point towards Earth's north pole because they are reacting to the Earth's magnetic field. TRUE FALSE

- 4. **Place the compass in different locations around the magnet.** How is the compass affected by the magnet? Explain what you're seeing.
- 5. Some objects in space have magnetic fields, created when electrically charged material moves around. We can detect magnetic fields in regions where stars are forming. What could this tell astronomers about stars and star-forming regions:
 - a. Material that makes up a star is electrically charged. TRUE FALSE
 - b. A star can have magnetic poles like Earth. TRUE FALSE
 - c. Material that makes up a star is not magnetized. TRUE FALSE
 - d. Material that makes up a star will not affect a compass needle. TRUE FALSE
- 6. **Planets and moons can have magnetic fields**, created by the movement of ferromagnetic material (like magma) below their surfaces. Planets with this movement are called geologically active.
 - a. Our Moon has no magnetic field. What does this suggest about the material below its surface?
 - b. Jupiter has a very strong magnetic field. What does this suggest about the material inside Jupiter?
 - c. Mars has no magnetic field. What does this suggest about the inside of Mars?

ACTIVITY 4: MAKING A COMPASS



- 1. **Opposite poles attract.** If a magnet's north pole points toward Earth's geographic North pole, what does this tell you about the type of magnetic pole located at Earth's geographic North?
- 2. A compass needle points toward Earth's magnetic north pole, which is not the same as the geographic North Pole.
 - a. Where does your compass needle point when you use it where you are now? Does it help you find geographic North?
 - b. Where would a compass needle point if you were standing at the geographic North Pole?
 - c. Where would a compass needle point if you were standing at the geographic South Pole?
- 3. A compass needle becomes magnetic when it is rubbed on a magnet. This process is called magnetization. Would a needle that hasn't been magnetized work in a compass? Why or why not?
- 4. To make a compass from a magnetized needle, place it on a cardboard or paper strip and let it float in a bowl of water.
 - a. Why does it need to rest on a paper or cardboard strip? Can you replace it with any other material?
 - b. Why does the needle need to float freely in water?
- 5. When you bring a magnet close to a floating compass, it changes the direction the needle points. What does this tell you about the limits of using a compass, and under what conditions can you trust it to point North?
- 6. **GPS** navigation uses satellites, while a compass uses Earth's magnetic field. Describe a situation where a GPS would be better for finding your way, and a situation where a compass would be better.
- 7. The Moon has no global magnetic field, and Mars doesn't have one either only some magnetized rocks. Would a standard magnetic compass work on the Moon or Mars? Why or why not?
- 8. Challenge: The magnetic fields of stars and planets can change as material moves inside them. On Earth, the north and south magnetic poles switch places every several thousand years. If Earth's magnetic poles flipped, would a compass needle's north still point toward Earth's geographic North? Why or why not?

ACTIVITY 5: ELECTROMAGNETIC TRAIN

1. Predict which way the train will move! Curl your right hand in the direction of the arrows labelled "Current" in the diagram and give a thumbs-up – your thumb shows the train's expected direction. This is called the right-hand rule in physics, showing how current and the magnetic field are related. Test if the magnet train moves in the direction of your thumb.

- 2. If you flip the train and try to put in through the same end, what happens to the train's movement? What happens if you put the flipped train in the other end? Explain your answer using what you know about current direction and magnetic fields.
- 3. The magnet train won't run if the magnets are flipped so their poles face the opposite way. Explain why it only works when the magnets are oriented the correct way.
- 4. The magnet train in this activity runs on a coiled copper wire 'track'.
 - a. Is copper magnetic?
 - b. Could the train run on a coil made from a different metal?
 - c. Would a plastic slinky work instead? Explain your reasoning.
- 5. Why do you think the magnets need to be strong for this experiment to work? What would happen if you used weaker magnets?
- 6. **Stacking magnets makes them stronger.** If you add more magnets to the ends of the battery, how would it affect the train's movement? Would it go faster or slower?
- 7. **This setup uses the battery's energy quickly.** If you make the copper coil track longer (same coil spacing), predict how the train's speed will change from start to finish. Explain your reasoning.
- 8. Thicker copper wire can carry more electricity from the battery in this short-circuit **setup.** If the coiled track was made with thicker copper wire, what change would you expect in the train's motion? Explain your reasoning using the idea that moving electric charges create the magnetic field.
- 9. Challenge: A loop of current makes a magnetic field that looks a bit like a bar magnet's field. Scientists often use coils and electromagnets inside instruments. Explain why a loop is a useful shape when we want a strong, directed magnetic field.

Activity 1

- 1. a. Look for ... Attracting, no reaction, or repelling depending on what is being tested.
- b. Look for... Magnetic items such as paper clips, coins, keys, etc. Students might guess that all these materials are metals. You can encourage them to explore whether all metals are magnetic or not.
- 2. Expect: A paper clip is ferromagnetic and can be magnetized. Students should be able to make a chain of a few paper clips, but the number will vary with the strength of the magnet used.
- 3. Expect: Items such as paper, plastic materials, metals such as copper, etc.

 Answer: Diamagnetic materials cannot be magnetized like a paper clip because their atoms respond differently than ferromagnets near a magnet.
- 4. Answer: Magnets can attract or repel each other. A block magnet cannot be picked up from just any angle by a bar magnet. Expect: Only opposite poles of a magnet attract each other.
- 5. Expect: It will not have any effect on magnets held in-hand because it's too big, but it would affect smaller magnets, such as the ones in a compass.

 Look for ... Earth is like a giant magnet, but its magnetic field is very weak and spread out.
- 6. Look for... Creative and sound answers here. Fridge magnet: Holds notes or pictures in place on a refrigerator door. Speaker: Uses magnets to move a coil and produce sound. Credit/debit card strip: Stores data on a magnetic strip that can be read by a machine. (Other acceptable answers: electric motors, compasses, magnetic clasps, MRI machines, etc.)
- 7. Expected: **Ferromagnetic:** Materials that are strongly attracted to magnets and can become temporary magnets themselves.

Diamagnetic: Materials that are not attracted to magnets.

Magnetic poles: The two ends of a magnet (north and south) where the magnetic force is strongest; opposite poles attract, like poles repel.

Paramagnetic: Materials that are weakly attracted to a magnetic field but do not stay magnetized when the field is removed.

- 8. a. Answer: All metals are not magnetic. The copper coil is diamagnetic and will not respond to the bar magnet. Aluminum is paramagnetic and may be very weakly attracted to a magnet or not respond to a weak magnet at all.
- b. Metal detectors use magnets to produce weak electricity inside metals to detect them. This is definitely an advanced discussion.

7-12 ANSWER KEY CONTINUED

Activity 2

1. a. Answer: False.

Look for... Only opposite poles of a magnet attract each other. Joining similar poles of a magnet will cause repulsion and the magnets won't stick.

b. Answer: True.

Look for... A magnet's strength weakens with distance.

- 2. Expect: Typically, magnets will start affecting each other a few centimetres apart. Students should get a bigger distance for stronger magnets.
- a. The neodynium and bar magnets are strong magnets
- b. The smaller magnets are weaker
- c. Look for... Answers might vary as it is a challenge to make precise measurements before the magnets move.
- 3. Expect: a. Students may have trouble stacking the magnets together because like poles will repel. The magnets would try to shift around so that opposite poles are sticking together.
- b. Look for... explaining the attraction/repulsion of magnet poles in the student's own words.
- 4. a. Repel, b. Attract, c. Repel.
- 5. a. Answer: It's attraction.
- b. Expect: Shows that magnetic forces can pull on certain objects without touching them. The magnet's field extends through the space (distance) between the magnet and the paperclip, causing it to move.
- 6. a. Expect: Examples: gravity, electric force, friction, normal/contact force, tension, spring force, air resistance, buoyancy, etc.
- b. Answer: Yes. Look for... Gravitational force can act on objects at a distance without any physical contact but can only attract objects. Air resistance: pushes against motion through air. Buoyancy: pushes up in liquids or gases.
- c. Answer: Yes. Look for... Gravity and electricity can act at a distance.
- d. Look for... Everyday examples like: Gravity attracting an apple. Static making hair stand up. Boats float.

Activity 3

1. Expect: Gravitational force and Electric force. These are non-contact forces like the magnetic force where objects don't need to be touching each other to be influenced by the force.

7-12 ANSWER KEY CONTINUED

- 2. a. Answer: True. Magnetic field lines start at the north pole and end at the south pole.
- b. Answer: False. Earth's magnetic poles are misaligned with the geographic poles,
- c. Answer: True. North pole of a compass needle points to the south magnetic pole of the Earth (close to geographic North).
- 3. Field lines would come out of the surface of the magnet and loop around to the other side in both cases as opposed to the bar magnet where they go from end to end.
- 4. The compass needle always points toward the magnet's south pole. Near the north pole, the arrow points directly away; near the south pole, it points straight toward it. If you draw the arrows in several places and connect them, you'll be tracing the magnetic field lines. **Note**: if a compass has been re-magnetized by being stored near the magnets in the box, the needle will still line up the same way, but it will point in the opposite direction (from south to north).
- 5. Answers: a. True, b. True, c. False, d. False.
- 6. Expect: a. Lack of a magnetic field implies there is no active movement of material in the Moon's interior. It is geologically dead and cannot have things like volcanic activity or lava.
- b. Jupiter has a strong magnetic field because its interior is likely made of ferromagnetic material that is moving around.
- c. Like the Earth's moon, Mars is geologically dead

Activity 4

- 1. The Earth's magnetic pole near its geographic North behaves like a south pole.
- 2. Expect: a. The needle should still point towards the geographic North Pole, still point roughly towards the geographical North Pole. The closer you are to the poles, the less precise this is. b. Because the poles are slightly misaligned, being at the true geographical North would point towards the magnetic pole close to it, which behaves like a magnetic south pole. If you were to stand on top of the Earth's magnetic south pole, the compass needle may spin around aimlessly. c. It would still point at the geographic North Pole. It may once again spin around if you stood right on top of the magnetic pole closest to the Earth's geographic South Pole.
- 3. Answer: No. A needle needs to be magnetized in order to interact with the Earth's magnetic field and point to the North Pole.
- 4. Expect: a. The cardboard or paper strip helps it float on water without getting wet. If you were to replace the strip with another material, it should be a diamagnetic material that can float on water so

7-12 ANSWER KEY CONTINUED

that it doesn't interfere between the needle and the Earth's magnetic field.

- 4. b. The needle needs to be unrestrained so that it can move around and align itself to the geographic north/magnetic south pole.
- 5. Expect: A compass is only useful if not around any other magnet or magnetic material. It won't point in the right direction if another magnet or magnetic material is brought close to it.
- 6. Look for... GPS would be better when you need exact locations or maps, like finding a specific place in an unfamiliar city .

A compass would be better when you just need to know direction and don't have satellite service or detailed maps, such as hiking in the wilderness on Earth.

- 7.Answer: No. A compass needs a global magnetic field to align its needle. Without one, the needle wouldn't point in a consistent direction.
- 8. If the Earth's magnetic poles flipped, then a compass needle would point to the geographic south pole.

Activity 5

1. Expect: The train should move in the direction your right-hand thumb points (as shown in the diagram). If it doesn't, recheck battery and magnet orientation, and that the coil matches the diagram's current direction.

Look for...

Mentions that curling fingers with current gives the field direction; thumb indicates the train's expected motion; notes about troubleshooting if it doesn't match.

2. Answer: when reversing tr	ie train, the current changes	direction, which hips the magnetic held
direction in the coil, so the tr	ain will not go through the s	ame end. Placing in the other end, the train
will move the other way.		
Look for	→ —	\rightarrow
Current direction changes	field direction changes	motion reverses, explicit use of the

3. Answer: The train only works when both magnets have the same pole facing outward. That makes the coil's field and the magnets' field line up to push in one direction. Flipping a magnet reverses its field at that end, so the forces fight or cancel and the train stalls.

Look for...

right-hand rule.

Forces cancel/misalign if flipped, recognition that magnets also act as the battery-coil contacts.

- 4. a) Answer: No. Copper is non-magnetic (diamagnetic).
- b) Answer: Ferromagnetic metals won't work because the magnet would then stick to them. Paramagnetic metals may work if they are good conductors of electricity.

Look for... Distinguishes conductor vs. ferromagnetic vs. paramagnetic; examples: aluminium works, iron/steel don't.

c) Answer: No. A plastic slinky cannot conduct electricity. It won't create a circuit with the battery and won't push the train along.

Look for... No circuit = no current = no field = no train.

- 5. Answer: Stronger magnets give a stronger magnetic field at the battery ends, so the interaction with the coil's field is stronger and the push on the train is larger. Weak magnets don't produce enough force, and the train may not move.
- 6. Answer: The train would go faster because more magnets would produce a stronger magnetic field which would give a stronger push to the train.
- 7. Answer: The train will usually slow down over time/distance. Look for...Mentions quick energy drain; ties reduced current to weaker field and lower force; may note a fresh battery holds speed longer.
- 8. Answer: Expect the train to move faster/with a stronger push, because more current means a stronger magnetic field in the coil.

Look for... More current = stronger field = greater force

9. Look for... A current loop concentrates and directs the magnetic field through its centre (like a compact bar magnet). It provides a strong, focused magnetic field in a small space, which is useful inside astronomical instruments. With coils, it's easy to adjust the current (using dials, switch, or other inputs) changing the intensity of the magnetic field as needed.